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Learning Objectives for Chapter 4

After careful study of this chapter, you should be able to do the following:

1. Determine probabilities from probability density functions.

2. Determine probabilities from cumulative distribution functions, and cumulative 

distribution functions from probability density functions, and the reverse.

3. Calculate means and variances for continuous random variables.

4. Understand the assumptions for continuous probability distributions.

5. Select an appropriate continuous probability distribution to calculate 

probabilities for specific applications.

6. Calculate probabilities, means and variances for continuous probability 

distributions.

7. Standardize normal random variables.

8. Use the table for the cumulative distribution function of a standard normal 

distribution to calculate probabilities.

9. Approximate probabilities for Binomial and Poisson distributions.

Chapter 4 Learning Objectives 3
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Continuous Random Variables

4

• A continuous random variable is one which 

takes values in an uncountable set. 

• They are used to measure physical characteristics 

such as height, weight, time, volume, position, 

etc...

Examples

1. Let Y be the height of a person (a real number).

2. Let X be the volume of juice in a can.

3. Let Y be the waiting time until the next person 

arrives at the server.

Sec 4-1 Continuos Radom Variables
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Probability Density Function

Sec 4-2 Probability Distributions & Probability Density Functions 5
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Example 4-1: Electric Current
Let the continuous random variable X denote the current 

measured in a thin copper wire in milliamperes(mA). 

Assume that the range of X is 4.9 ≤ x ≤ 5.1 and f(x) = 5.  

What is the probability that a current is less than 5mA?

Answer:

Sec 4-2 Probability Distributions & Probability Density Functions 6

Figure 4-4 P(X < 5) 

illustrated.
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Cumulative Distribution Functions

Sec 4-3 Cumulative Distribution Functions 7

The cumulative distribution function is defined for all real 

numbers.
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Example 4-3:  Electric Current

For the copper wire current measurement in 

Exercise 4-1, the cumulative distribution 

function consists of three expressions.

Sec 4-3 Cumulative Distribution Functions 8

0 x  < 4.9  

F (x ) = 5x - 24.5 4.9 ≤ x  ≤ 5.1

1 5.1 ≤ x

Figure 4-6 Cumulative distribution functionThe plot of F(x) is shown in Figure 4-6.
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Probability Density Function from the Cumulative 

Distribution Function

• The probability density function (PDF) is 

the derivative of the cumulative distribution 

function (CDF).

• The cumulative distribution function (CDF) 

is the integral of the probability density 

function (PDF).

Sec 4-3 Cumulative Distribution Functions 9

   
 
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dF x

F x f x
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Exercise 4-5: Reaction Time

• The time until a chemical reaction is complete (in 
milliseconds, ms) is approximated by this 
cumulative distribution function:

• What is the Probability density function?

• What proportion of reactions is complete within 
200 ms?

Sec 4-3 Cumulative Distribution Functions 10
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Mean & Variance

Sec 4-4 Mean & Variance of a Continuous Random Variable 11
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Example 4-6: Electric Current

For the copper wire current measurement, the 

PDF is f(x) = 0.05 for 0 ≤ x ≤ 20. Find the mean 

and variance. 

Sec 4-4 Mean & Variance of a Continuous Random Variable 12
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Mean of a Function of a Continuous Random Variable

Sec 4-4 Mean & Variance of a Continuous Random Variable 13

 

      

If  is a continuous random variable with a probability density function ,

               (4-5)

X f x

E h x h x f x dx





 

Example 4-7:  

Let X be the current measured in mA. The PDF is f(x) = 0.05 

for 0 ≤ x ≤ 20. What is the expected value of power when the 

resistance is 100 ohms? Use the result that power in watts P

= 10−6RI2, where I is the current in milliamperes and R is the 

resistance in ohms. Now, h(X) = 10−6100X2. 

 
2020 3

4 2

0 0

10 0.0001 0.2667 watts
3

x
E h x x dx     
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Continuous Uniform Distribution

• This is the simplest continuous distribution 

and analogous to its discrete counterpart.

• A continuous random variable X with 

probability density function

f(x) = 1 / (b-a) for a ≤ x ≤ b

Sec 4-5 Continuous Uniform Distribution 14

Figure 4-8  Continuous uniform Probability Density Function
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Mean & Variance

• Mean & variance are:

Sec 4-5 Continuous Uniform Distribution 15
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Example 4-9: Uniform Current

The random variable X has a continuous uniform distribution on 

[4.9, 5.1]. The probability density function of X is f(x) = 5, 4.9 ≤ x 

≤ 5.1. What is the probability that a measurement of current is 

between 4.95 & 5.0 mA?

Sec 4-5 Continuous Uniform Distribution 16

Figure 4-9

The mean and variance formulas can be applied with a = 4.9 

and b = 5.1. Therefore,

   
 

2

2
0.2

5 mA and =0.0033 mA  
12

E X V X   
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Cumulative distribution function of Uniform distribution

Sec 4-5 Continuous Uniform Distribution 17
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Figure 4-6 Cumulative distribution function
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Normal Distribution

Sec 4-6 Normal Distribution 18
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Empirical Rule

For any normal random variable, 

P(μ – σ < X < μ + σ)   = 0.6827

P(μ – 2σ < X < μ + 2σ) = 0.9545

P(μ – 3σ < X < μ + 3σ) = 0.9973

Sec 4-6 Normal Distribution 19

Figure 4-12  Probabilities associated with a normal distribution
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Standard Normal Random Variable

A normal random variable with

μ = 0 and σ2 = 1

is called a standard normal random variable 

and is denoted as Z.  The cumulative 

distribution function of a standard normal 

random variable is denoted as:

Φ(z) = P(Z ≤ z)

Values are found in Appendix Table III and 

by using Excel and Minitab.

Sec 4-6 Normal Distribution 20
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Example 4-11: Standard Normal Distribution

Assume Z is a standard normal random variable.

Find P(Z ≤ 1.50).     Answer:  0.93319

Find P(Z ≤ 1.53).          Answer:  0.93699

Find P(Z ≤ 0.02).          Answer:  0.50398

Sec 4-6 Normal Distribution 21

Figure 4-13  Standard normal Probability density function

NOTE : The column headings refer to the hundredths digit of the value of z in P(Z ≤ z). 

For example, P(Z ≤  1.53) is found by reading down the z column to the row 1.5 and then selecting the 

probability from the column labeled 0.03 to be 0.93699.
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Standardizing a Normal Random Variable

Sec 4-6 Normal Distribution 22

 

2Suppose  is a normal random variable with mean  and variance , 

the random variable 

is a normal random variable with ( ) 0 and ( ) 1.

The probability is obtained by using Appendix Table III 
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Example 4-14: Normally Distributed Current-1

Suppose that the current measurements in a strip of wire are assumed 

to follow a normal distribution with μ = 10 and σ = 2 mA, what is the 

probability that the current measurement is between 9 and 11 mA?

Answer:

Sec 4-6 Normal Distribution 23

 

 

   

9 10 10 11 10
9 11

2 2 2

0.5 0.5

0.5 0.5

0.69146 0.30854 0.38292

x
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P z

P z P z

   
     

 

   

    

  

0.38292 = NORMDIST(11,10,2,TRUE) - NORMDIST(9,10,2,TRUE)

Using Excel



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Example 4-14: Normally Distributed Current-2

Determine the value for which the probability that a current 

measurement is below 0.98.

Answer:

Sec 4-6 Normal Distribution 24

14.107 = NORMINV(0.98,10,2)

Using Excel

 

 

10 10

2 2
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2

2.05 is the closest value.

2 2.05 10 14.1 mA.

X x
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  
   

 

 
   

 



  
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Normal Approximations

• The binomial and Poisson distributions become 

more bell-shaped and symmetric as their mean 

value increase.

• For manual calculations, the normal approximation 

is practical – exact probabilities of the binomial and 

Poisson, with large means, require technology 

(Minitab, Excel).

• The normal distribution is a good approximation for:

– Binomial if np > 5 and n(1-p) > 5.

– Poisson if λ > 5.

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 25
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Normal Approximation to the Binomial Distribution

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 26
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Example 4-18: Applying the Approximation

In a digital communication channel, assume that the number of bits received in 

error can be modeled by a binomial random variable.  The probability that a bit 

is received in error is 10-5.  If 16 million bits are transmitted, what is the 

probability that 150 or fewer errors occur? 

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 27

   

   

 

5 5

150 150.5

160 150.5 160

160 1 10 160 1 10

9.5
0.75104 0.2263

12.6491

P X P X

X
P

P Z P Z

 
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 
   

   
 

 
      

 

0.2263 = NORMDIST(150.5, 160, SQRT(160*(1-0.00001)), TRUE)

-0.7% = (0.2263-0.228)/0.228 = percent error in the approximation

Using Excel
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Normal Approximation to Hypergeometric

Recall that the hypergeometric distribution is 

similar to the binomial such that p = K / N and 

when sample sizes are small relative to population 

size. Thus the normal can be used to approximate 

the hypergeometric distribution.

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 28

hypergeometric ≈ binomial ≈ normal

distribution distribution distribution

n  / N  < 0.1 np  < 5

n (1-p ) < 5

Figure 4-21  Conditions for approximating hypergeometric and 

binomial probabilities
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Normal Approximation to the Poisson

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 29

 

 

If  is a Poisson random variable with  and 

,

                                                       (4-13)

is approximately a standard normal random variable.  

The same continuity correct
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
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ion used for the binomial 

distribution can also be applied. The approximation is 

good for 5 
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Example 4-20: Normal Approximation to Poisson

Assume that the number of asbestos particles in a square meter of dust 

on a surface follows a Poisson distribution with a mean of 1000. If a 

square meter of dust is analyzed, what is the probability that 950 or 

fewer particles are found?

Sec 4-7 Normal Approximation to the Binomial & Poisson Distributions 30

 

   

 

1000950

0
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950      ... too hard manually! 

!

The probability can be approximated as

950 950.5

950.5 1000

1000

1.57 0.058
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e
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P Z
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



 

  

 
  

 

   



0.0578 = POISSON(950,1000,TRUE)

0.0588 = NORMDIST(950.5, 1000, SQRT(1000), TRUE)

1.6% = (0.0588 - 0.0578) / 0.0578 = percent error

Using Excel
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Exponential Distribution Definition

The random variable X that equals the distance 

between successive events of a Poisson 

process with mean number of events λ > 0 per 

unit interval is an exponential random variable 

with parameter λ.  The probability density 

function  of X is:

f(x) = λe-λx for   0 ≤ x < 

Sec 4-8 Exponential Distribution 31
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Exponential distribution - Mean & Variance

Sec 4-8 Exponential Distribution 32

   2

2

If the random variable  has an exponential 

distribution with parameter ,

1 1
     and          (4-15)

X

E X V X



 
 

   

Note:

• Poisson distribution : Mean and variance are same.

• Exponential distribution : Mean and standard deviation  

are same.
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Example 4-21: Computer Usage-1
In a large corporate computer network, user log-ons to the system can be 

modeled as a Poisson process with a mean of 25 log-ons per hour. What is 

the probability that there are no log-ons in the next 6 minutes (0.1 hour)?  

Let X denote the time in hours from the start of the interval until the first 

log-on.

Sec 4-8 Exponential Distribution 33

   

   

25 0.125

0.1

0.1 25 0.082

The cumulative distribution function also can 

be used to obtain the same result as follows

0.1 1 0.1 0.082

xP X e dx e

P X F


   

   



Figure 4-23  Desired probability

0.0821 = 1 - EXPONDIST(0.1,25,TRUE)

Using Excel
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Example 4-21: Computer Usage-2

Continuing, what is the probability that the time 

until the next log-on is between 2 and 3 minutes 

(0.033 & 0.05 hours)?

Sec 4-8 Exponential Distribution 34

 

     

0.05

25

0.033

0.05
25

0.033

0.033 0.05 25

0.152

An alternative solution is

0.033 0.05 0.05 0.033 0.152

x
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P X e dx

e

P X F F





  

  

    



0.148 = EXPONDIST(3/60, 25, TRUE) - EXPONDIST(2/60, 25, TRUE)

(difference due to round-off error)

Using Excel



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Example 4-21: Computer Usage-3

• Continuing, what is the interval of time such that the 

probability that no log-on occurs during the interval is 

0.90?

• What is the mean and standard deviation of the time until 

the next log-in?

Sec 4-8 Exponential Distribution 35
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Lack of Memory Property

An interesting property of an exponential random variable 

concerns conditional probabilities.

For an exponential random variable X,

P(X<t1+t2|X>t1)= P(X < t2)

Sec 4-8 Exponential Distribution 36

Figure 4-24  Lack of memory property of an exponential distribution.
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Example 4-22: Lack of Memory Property

Let X denote the time between detections of a particle with a Geiger 

counter.  Assume X has an exponential distribution with E(X) = 1.4 

minutes.  What is the probability that a particle is detected in the next 

30 seconds?

No particle has been detected in the last 3 minutes.  Will the probability 

increase since it is “due”?

No, the probability that a particle will be detected depends only on the 

interval of time, not its detection history.

Sec 4-8 Exponential Distribution 37

    0.5 1.40.5 0.5 1 0.30P X F e     0.300 = EXPONDIST(0.5, 1/1.4, TRUE)

Using Excel
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Erlang & Gamma Distributions

• The Erlang distribution is a generalization of 
the exponential distribution.

• The exponential distribution models the 
interval to the 1st event, while the Erlang
distribution models the interval to the rth

event, i.e., a sum of exponentials.

• If r is not required to be an integer, then the 
distribution is called gamma.

• The exponential, as well as its Erlang and 
gamma generalizations, is based on the 
Poisson process.

Sec 4-9 Erlang & Gamma Distributions 38
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Example 4-23: Processor Failure
The failures of CPUs of large computer systems are often modeled as 

a Poisson process.  Assume that units that fail are repaired immediately 

and the mean number of failures per hour is 0.0001.  Let X denote the 

time until 4 failures occur.  What is the probability that X exceed 40,000 

hours?

Let the random variable N denote the number of failures in 40,000 

hours.  The time until 4 failures occur exceeds 40,000 hours if and only 

if the number of failures in 40,000 hours is ≤ 3.

Sec 4-9 Erlang & Gamma Distributions 39
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0.433 = POISSON(3, 4, TRUE)

Using Excel
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Erlang Distribution

Generalizing from the prior exercise:

Sec 4-9 Erlang & Gamma Distributions 40
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Gamma Function

The gamma function is the generalization of the 

factorial function for r > 0, not just non-negative 

integers.

Sec 4-9 Erlang & Gamma Distributions 41
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Gamma Distribution

The random variable X with probability 

density function:

is a gamma random variable with parameters 

λ > 0 and r > 0.  If r is an integer, then X has 

an Erlang distribution.

Sec 4-9 Erlang & Gamma Distributions 42
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Mean & Variance of the Gamma

If X is a gamma random variable with 

parameters λ and r,

μ = E(X) = r / λ

and 

σ2 = V(X) = r / λ2

Sec 4-9 Erlang & Gamma Distributions 43
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Example 4-24: Gamma Application-1
The time to prepare a micro-array slide for high-output genomics is a Poisson 

process with a mean of 2 hours per slide.  What is the probability that 10 slides 

require more than 25 hours?  

Let X denote the time to prepare 10 slides.  Because of the assumption of a 

Poisson process, X has a gamma distribution with λ = ½, r = 10, and the 

requested probability is P(X > 25).  

Using the Poisson distribution, let the random variable N denote the number of 

slides made in 10 hours. The time until 10 slides are made exceeds 25 hours if 

and only if the number of slides made in 25 hours is ≤ 9.
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Using Excel
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Example 4-24: Gamma Application-2

What is the mean and standard deviation of the time to prepare 10 slides?
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0.2014 = 1 - GAMMADIST(25,10,2,TRUE)

Using Excel
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Using the gamma distribution, the same result is obtained.
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Example 4-24: Gamma Application-3
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The slides will be completed by what length of time 

with 95% probability?  That is:  P(X ≤ x) = 0.95

31.41 = GAMMAINV(0.95, 10, 2)

Using ExcelMinitab:  Graph > Probability Distribution 

Plot > View Probability
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Weibull Distribution
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Example 4-25: Bearing Wear

• The time to failure (in hours) of a bearing in a 

mechanical shaft is modeled as a Weibull random 

variable with β = ½ and δ = 5,000 hours.

• What is the mean time until failure?

• What is the probability that a bearing will last at least 

6,000 hours?  

Only 33.4% of all bearings last at least 6000 hours.
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Lognormal Distribution
Let W denote a normal random variable with mean θ and 

variance ω2, then X = exp(W) is a lognormal random 

variable with probability density function
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Example 4-26: Semiconductor Laser-1

The lifetime of a semiconductor laser has a lognormal 

distribution with θ = 10 and ω = 1.5 hours.  

What is the probability that the lifetime exceeds 10,000 hours?
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1 - NORMDIST(LN(10000), 10, 1.5, TRUE) = 0.701
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Example 4-26: Semiconductor Laser-2

• What lifetime is exceeded by 99% of lasers?

• What is the mean and variance of the lifetime?
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Beta Distribution

Sec 4-12 Beta Distribution 52

The random variable X with probability 

density function

is a beta random variable with parameters 

α > 0 and β > 0.
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Example 4-27: Beta Computation-1
Consider the completion time of a large commercial real estate 

development.  The proportion of the maximum allowed time to 

complete a task is a beta random variable with α = 2.5 and β = 1.  

What is the probability that the proportion of the maximum time 

exceeds 0.7?  

Let X denote the proportion.
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0.590 = 1 - BETADIST(0.7,2.5,1,0,1)

Using Excel
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Mean & Variance of the Beta Distribution
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Example 4-28:  In the above example, α = 2.5 and β = 1.  

What are the mean and variance of this distribution?
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Mode of the Beta Distribution 
If α >1 and β > 1, then the beta distribution is mound-shaped and has 

an interior peak, called the mode of the distribution.  Otherwise, the 

mode occurs at an endpoint.
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Important Terms & Concepts of Chapter 4

Beta distribution

Chi-squared distribution

Continuity correction

Continuous uniform distribution

Cumulative probability distribution 
for a continuous random 
variable

Erlang distribution

Exponential distribution

Gamma distribution

Lack of memory property of a 
continuous random variable

Lognormal distribution

Mean for a continuous random 
variable

Mean of a function of a continuous 
random variable

Normal approximation to binomial & 
Poisson probabilities

Normal distribution

Probability density function

Probability distribution of a 
continuous random variable

Standard deviation of a continuous 
random variable

Standardizing

Standard normal distribution

Variance of a continuous random 
variable

Weibull distribution
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